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Abstract

An elliptic curve E over a field F can be defined by the equation

y2 = x3 + ax+ b,

where a, b ∈ F. For any r ≥ 1, let aE (pr) denote the trace of the Frobenius endomorphism of

E over the field Fpr , p being a prime. For a natural number k, let κ denote the set of all k-th

powers of natural numbers. James and Yu in their work [JY06] computed the distribution

of

{aE (p) : aE (p) ∈ κ}

as the primes p → ∞ by averaging over suitable families of elliptic curves. In this thesis

we review the work of James and Yu [JY06]. In an effort to obtain a smooth analogue of

the main result proved in [JY06], we present a methodology for the same and explain the

technical problems encountered. At the end of this thesis we provide a result about the

distribution of aE (p2) by taking average over a family of elliptic curves.
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Chapter 1

Introduction

The goal of this chapter is to introduce and state the primary topic of study in this thesis.

We study a variant of the Sato-Tate distribution theorem that was addressed by K. James

and G. Yu [JY06].

We begin by reviewing basic projective geometry that leads to the notion of elliptic curves

over a field in Section 1.2.1. In Sections 1.2.2 and 1.2.3, we review the notions of an elliptic

curve over a field F and the Mordell-Weil group of such a curve. In Section 1.2.4, we review

a proof of the fundamental theorem which states that the Mordell-Weil group of an elliptic

curve over the field of rational numbers Q is finitely generated. In Section 1.2.5, we turn our

attention to Mordell-Weil groups of elliptic curves over finite fields and discuss an arithmetic

important sequence arising from such curves. Finally, in Section 1.3, we recall the statement

of Sato-Tate distribution theorem. In Chapter 2, we review a theorem of James and Yu on

a variant of the Sato-Tate theorem upon averaging over suitable families of elliptic curves.

We also review key ideas from their proof, most notably the use of the circle method.

1.1 Original contributions

In Chapter 3, we make an effort to derive a “smooth” analogue of the main theorem of

James and Yu. We describe the technical difficulties encountered in the process and formu-

late a conjecture that could lead to the goal of deriving the smooth analogue. In Chapter
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4, we compute the expected distribution measure of {ãE (p2), p prime , p → ∞} upon aver-

aging over a suitable family of elliptic curves. This is done using the techniques previously

developed in [BP19].

1.2 Preliminaries

1.2.1 Projective Geometry Basics

We will review the fundamental definitions and theorems related to elliptic curves that are

needed to state the project goals. Our primary reference for the background material is

[JT94].

Suppose F is an arbitrary field. Consider the following set of n-tuples:

Sn := {(x1, x2, . . . , xn) : (x1, x2, . . . , xn) 6= (0, 0, . . . , 0)}.

Define a relation ‘∼’ on this set as follows:

(x1, x2, . . . xn) ∼ (y1, y2, . . . yn) if and only if x1 = ty1, x2 = ty2, . . . , xn = tyn for t(6= 0) ∈ F.

Then one can easily prove that ‘∼’ defines an equivalence relation on the set Sn. This

allow us to make the following definition.

Definition 1.1. Projective Plane The n-projective plane(denoted as Pn) is defined as the

set Sn+1 modulo the relation ‘∼’ , i.e,

Pn := Sn+1/ ∼ .

We will be mainly interested in the case where the field F is Fp or Q.

Let us denote the 2-affine plane by A2, which consists of all 2-tuples with entries in F.

Then we can interpret the the projective plane P2 by unifying it with the set A2 ∪ P1. A
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precise one-to-one correspondence can be given as follows:

f : P2 −→ A2 ∪ P1

such that

[(a, b, c)] −→
(
a

c
,
b

c

)
∈ A2 (if c 6= 0)

[(a, b, c)] −→[a, b] ∈ P1 (if c = 0).

Both of these interpretations of the projective plane will be important for our purposes.

Definition 1.2. Homogeneous Polynomial

A polynomial F (X, Y, Z) with coefficients from the field F is called a homogeneous poly-

nomial of degree d if it satisfies the following relation:

F (tX, tY, tZ) = tdF (X, Y, Z).

Definition 1.3. Projective Curve

A projective curve or algebraic curve C in the projective plane P2 is the set of solu-

tions(over the underlying field F) of the polynomial equation

C : F (X, Y, Z) = 0

where F is a non-constant homogeneous polynomial. Moreover, the degree of the algebraic

curve is the degree of the homogeneous polynomial F.

Definition 1.4. A point P of the affine curve C : f(x, y) = 0 is called a singular point if

∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

A point P is non singular if it is not singular.

Definition 1.5. Straight Line A line in the projective plane is given by the homogeneous
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equation of the following form:

αX + βY + γZ = 0

where α, β, γ ∈ F.

Observe that, if (a, b, c) is a point on the projective curve such that c is non-zero, then

we have

F (a, b, c) = 0 =⇒ cdF

(
a

c
,
b

c
, 1

)
= 0 =⇒ F

(
a

c
,
b

c
, 1

)
= 0.

Thus, if we define a new polynomial(which is not homogeneous) by f(x, y) := F (x, y, 1),

then all the solutions of the equation f(x, y) = 0 will give us the points of the projective

curve that are on the affine plane. Therefore, the curve C0 : f(x, y) = 0 is called the affine

part of the projective curve C.

we will end this section by describing two very important Theorems regarding projective

curves which will be useful later.

For two projective curves C1 and C2 over the field F, for each point P ∈ P2, we will

formally define multiplicity or intersection index, denoted by I(C1 ∩ C2, P ).

Let f1(x, y) = 0 and f2(x, y) = 0 denote the affine parts of the curve C1 and C2. Let us

assume that the polynomials f1 and f2 do not have any common components and the line

at infinity is not a component of either of the curve. Let k = F̄ denote the algebraic closure

of F.

Let R = k[x, y] denote the polynomial ring in two variables and (f1, f2) denote the ideal

in R generated by f1 and f2. Let K be the fraction field of R, i.e, K is the field of rational

functions in the variables x, y. If P is the point (a, b) in the X −Y plane then for a rational

function φ := f(x, y)
g(x, y)

∈ K, we say that φ is defined at P if g(a, b) 6= 0. For a given point P

we define the local ring of P to be the set of all φ ∈ K which are defined at P. We denote

this ring by OP .

Now let (f1, f2)P denote the ideal generated by f1 and f2 in OP . Then the intersection

index of C1 and C2 at the point P is defined as
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I(C1 ∪ C2, P ) := dim

(
OP

(f1, f2)P

)

Observe that this definition does not account for the points P which are not in the affine

plane. Our next goal is to define the intersection index for every point in P2.

As previous let F1(X, Y, , Z) and F2(X, Y, Z) denote the homogeneous polynomial over

F that represents the curves C1 and C2 respectively. We will define the ring K in this case

as follows:

K := {Φ =
F (X, Y, Z)

G(X, Y, X)
: F and G are homogeneous polynomials of same degree over the field k}.

If P = [A, B, C] is a point in P2 then we say that Φ = F (X,Y, Z)
G(X,Y,X)

∈ K is defined at P if

G(A, B, C) 6= 0. In this case OP will be defined as

Op := {Φ ∈ K : Φ is defined at P}.

Let us define:

(F1, F2)P :=

{
F

G
∈ OP : F is of the form F = H1F1 +H2F2

}
.

Finally, for any arbitrary P ∈ P2 we define the intersection index to be

I(C1 ∪ C2, P ) := dim
OP

(F1, F2)P
.

The following properties of intersection index will be important to our case:

• If P /∈ C1 ∩ C2 then , I(C1 ∩ C2, P ) = 0.

• If P ∈ C1 ∩ C2 and P is a non-singular point with C1 and C2 having different tangent

directions at P , then I(C1 ∩ C2, P ) = 1.

• If C1 and C2 have same tangent directions at P then I(C1 ∩ C2, P ) > 1.
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We are now in shape to state two very well-known results which will be important later on.

Theorem 1.6. Bezout’s Theorem

Let C1 and C2 be projective curves with no common components, then∑
P∈ C1∩C2

I(C1 ∩ C2, P ) = (deg C1)(deg C2).

Theorem 1.7. Cayley - Bacharach Theorem

If C1 and C2 are projective curves with no common components of respective degrees d1

and d2 and suppose that C1 and C2 intersect at d1d2 distinct points. Let D be a curve in P2

of degree d1 + d2 − 3. If D passes through all but one points of C1 ∩ C2 then D must pass

through the remaining point also.

1.2.2 Elliptic Curves

One can prove that the affine part of a smooth projective curve of degree 3 can be reduced

to the following form which is known as Weierstrass Normal Form

y2 = f(x) = x3 + bx+ c.

Definition 1.8. Elliptic Curves

An elliptic curve E over the field F with characteristic different from 2 is a nonsingular

projective curve given by the equation

F (X, Y, Z) = Y 2Z − (X3 + aX2Z + bXZ2 + cZ3) = 0

where a, b, c ∈ F.

Definition 1.9. Let E : y2 = f(x) denote the affine part of an elliptic curve over the field

F. Then, the set of F-rational points on E is the set

E(F) := {(x, y) : (x, y) ∈ F× F, y2 = f(x)}
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If the underlying field is Q, then the set E(Q) will be called the set of Q-rational points

and an element of this set will be called a rational point of E.

1.2.3 The Mordell - Weil Group

For any arbitrary field F and an elliptic curve E over F, let us consider the set E(F) in greater

detail. First of all, note that there is no guarantee that this set is non-empty. However, we

will consider the elliptic curves for which this set is known to be non-empty. We wish to

impose a group structure on this set. Since we have assumed this set to be non-empty, let

O be a fixed element of this set. We define a binary operation ∗ on this set as follows:

• Case 1 Suppose P and Q are two distinct points of the set E(F). Then, by Bezout’s

Theorem the line joining the points P and Q has a third intersection point with the

elliptic curve E. Note that, this third point can as well be any of the points P, Q or

O. We define P ∗Q to be this point.

• Case 2 Suppose P is any point on the elliptic curve E. Construct the tangent line to

the elliptic curve at the point P in the projective plane. Again, by Bezout’s Theorem

this line will have a third point of intersection with the elliptic curve(can be the point

P itself). Define this point to be P ∗ P.

Now, define a binary operation ‘+’ on the set E(F) as follows:

If P and Q are any two points of the set E(F), then P + Q is defined to be the third

point of intersection of the elliptic curve and the line joining P ∗Q and O.

One can prove that the set E(F) with the binary operation ‘+’ forms a commutative

group with O being the identity element. This group is known as the Mordell - Weil

group.
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1.2.4 The group E(Q)

We consider an elliptic curve E over Q in its Weierstrass normal form, i.e

E(a, b) : y2 = f(x) = x3 + ax+ b, where a, b ∈ Q.

Note that if (x1, y1) is a point of E(Q), then so is (x1, −y1).

For the constructon of the group E(Q), we will take the point [(0, 1, 0)] in the projective

plane to be the point O. Observe that if [(x1, x2, 1)] is a point on the projective plane, then

the affine part of the line joining these two points has the form:

x = x1.

Therefore, the affine part of the line joining a point [(x1, y1, 1)] with O is just the line

parallel to Y -axis through the point (x1, y1). Hence, from our definition of P +Q and these

observations, we can conclude that P + Q is the reflection of P ∗ Q w.r.t X− axis. If P is

the point (x1, y1) then P ∗ O is the point (x1, −y1) and clearly −P = P ∗ O. Moreover, if

P +Q+R = O then P, Q and R are collinear.

Now, let us find a precise formula for this group operation.

Let P = (x1, y1) and Q = (x2, y2) are any two points on the elliptic curve E (not

necessarily distinct). We denote the point P +Q = R = (x3, y3). Let

y = λx+ ν

denote the affine part of the line joining P and Q or the tangent at P if the points are same.

Then, we have the following identity:

f(x)− (λx+ ν)2 = (x− x1)(x− x2)(x− x3).

Equating the coefficient of x2 on both side of this equation, we obtain

λ2 = x1 + x2 + x3 =⇒ x3 = λ2 − x1 − x2.

8



Equating the constant term of the identity we obtain:

ν2 = b+ x1x2x3.

If P and Q are distinct, then clearly λ = y2−y1
x2−x1 . Therefore, in this case we have the

following formula:

x3 =
(x1 + x2)(a+ x1x2) + 2(b− y1y2)

(x2 − x1)2
. (1.1)

And if P = Q, then λ =
3x21+a

2y1
. In this case, we have

x3 =
x4

1 − 2ax2
1 − 8bx1 + b2

4(x3
1 + ax1 + b)

. (1.2)

One can use y = λx+ ν to obtain a similar formula for y3.

Now, we will focus our attention on the size of the group E(F). Observe that, the group

E(Q) need not be finite. However, one can prove that it is possible to obtain a finite number

of points such that they generate the group E(Q).

To precisely state and prove this result, we will introduce the concept of ‘height of a

rational number’.

Definition 1.10. The height of a rational number m
n

in the lowest form is given by

H
(m
n

)
:= max{|m|, |n|}.

Definition 1.11. Suppose, P = (x, y) ∈ E(Q). The height of the point P is defined to be

the height of its X−coordinate, i.e,

H(P ) = H(x).

We also define

h(P ) := logH(P ).

The following two lemmas regarding the height function will be instrumental to our proof.
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Lemma 1.12. Suppose Q0 ∈ E(Q). Then, there is a constant κ0 such that

h(P +Q0) ≤ 2h(P ) + κ0.

Lemma 1.13. There exists a constant κ such that

h(2P ) ≥ 4h(P )− κ.

We will also require the following very interesting fact:

Theorem. The group E(Q)/2E(Q) is finite.

With these results, we can prove the following very important theorem:

Theorem 1.14. Mordell-Weil Theorem

The group E(Q) is finitely generated.

Proof. Let {Q1, Q2, ......., Qn} denotes the set of left coset representative of 2E(Q) in

E(Q). If P is an element of E(Q), then there exist Qi and P1 such that P = Qi+2P1. Again,

there exist Qj and P2 such that P1 = Qj + 2P2. Continuing this process and renumbering

Q′is, we obtain the following equation:

P = Q1 + 2Q2 + ....+ 2(n−2)(Qn + 2Pn).

Therefore, it will be sufficient to prove that for an arbitrary P ∈ E(Q), the set of such

possible Pn’s will always be finite.

By Lemma 1.12 we have

h(2Pi) = h(Pi−1 −Qi) ≤ 2h(Pi−1) + κi.

Also using Lemma 1.13 we obtain

h(2Pi) ≥ 4h(Pi)− κ.

10



Therefore, combining the above two equations

4h(Pi) ≤ 2h(Pi−1) + C,

with C := maxi κi + κ. Thus,

h(Pi) ≤
1

2
h(Pi−1) +

C

4

=
3

4
h(Pi−1)− 1

4
(h(Pi−1 − C)

If h(Pi−1) ≥ C then h(Pi) ≤ 3
4
h(Pi−1). Hence, there must be an m such that h(Pm) ≤ C.

Now, clearly the set {P ∈ E(Q) : h(P ) ≤ C} is finite. Therefore, number of such Pn must

be finite. This completes the proof.

�

1.2.5 The group E(Fp)

Let p denote a prime number. Given an elliptic curve E over the field Fp, again we are

interested in the size of the Mordell-Weil group E(Fp). Observe that since Fp is a finite field,

the group E(Fp) must be finite. Let us make the following definitions about primes.

Definition 1.15. Let E : y2 = f(x) = x3 + ax + b be an elliptic curve over Q, with integer

coefficients and p be a prime. If we reduce the affine curve modulo p and the polynomial
˜f(x) has distinct roots over Fp we say that E has a good reduction at p. Otherwise, we say

that E has a bad reduction at p.

Observe that E has a good reduction at p is equivalent to saying that the discriminant

∆ of f(x) is not divisible by p.

Instead of directly dealing with the order of the group E(Fp) we will consider the following

quantity:

aE (p) := p+ 1− |E(Fp)|.

Definition 1.16. Frobenius morphism

11



Suppose K is a field of characteristic p and let q = pr. If E/K is an elliptic curve given by

the Weierstrass normal form. Then define a new curve E(q)/K by raising the coefficients of

the equation representing E to the q-th power. Then the Frobenius morphism φq : E −→ E(q)

is given by

(x, y) −→ (xq, yq).

Definition 1.17. If p is a prime and q = pr, we denote the trace of the Frobenius endomor-

phism on E(Fq) by aE (q). Moreover we define

ãE (pr) :=
aE (pr)

p
r
2

.

In 1936, Hasse proved a bound for the quantity aE (p) in the series of papers [Has36a],

[Has36b] and [Has36c].

Theorem 1.18. If C is a non-singular irreducible elliptic curve of genus g over the field Fp,
then the number of points on C with coordinates in Fp is p + 1 + ε where the error term ε

satisfies

ε ≤ 2g
√
p.

By virtue of this Theorem one can define

ãE(p) :=
aE (p)

2
√
p

= cosπ θE (p), θE (p) ∈ [0, 1]. (1.3)

1.3 The Sato-Tate Conjecture

It is of great interest to ask how the quantity θE (p) behaves as we vary the prime p. With the

experimental support of Sato, Tate provided theoretical evidence ([Tat65]) of the distribution

of aE(p)/2
√
p in the interval [−1, 1] which is known as Sato-Tate conjecture. Equivalently,

it predicts the distribution of the cosine angles θE(p) in [0, 1] as the primes p → ∞. The

Sato-Tate conjecture is now a proved Theorem by the work of Clozel, Harris, Shepherd-

Barron and Taylor( [CHT08], [HSBT10], [Tay08] ). Before stating it we first need to make

the following definition:

Definition 1.19. Let C be an elliptic curve. We say that C has a complex multiplication if

there is an endomorphism φ : C −→ C which is not a multiplication by n map.

12



Suppose E = E(a, b) is an elliptic curve given by the equation

y2 = x3 + ax+ b, a, b ∈ Z

such that E does not admit complex multiplication. For any 0 ≤ α ≤ β ≤ 1 and X > 1,

define

π
(α,β)
E (X) := # {p ≤ X : α ≤ θE (p) ≤ β} .

Let π(X) denote the number of primes less than or equal to X. Moreover, define π̃(X) :=

π(X)− π(X
2

).

The Sato-Tate distribution Theorem states that for any α, β as above,

lim
X→∞

π
(α,β)
E (X)

π(X)
=

∫ β

α

2 sin2 πt dt.

This distribution theorem is counted among the deepest results in arithmetic geometry.

However, before this theorem was proved, some interesting statistical questions were asked

about the distribution of the cosine angles θE(p) and aE(p) even as one varies E over suitable

families of elliptic curves. At the heart of these investigations is a fundamental result of Birch

[Bir68] which evaluates the average moments of higher powers (aE(p))k as one varies E over

certain families of elliptic curves.

In 2006, James and Yu [JY06] turned around the above perspective and asked the fol-

lowing question: what can we say about the distribution of θE(p) in [0, 1] if we only consider

those primes p for which aE(p) itself is a k-th power (for a fixed positive power k)?

Let k ∈ N. We consider the set K = {mk : m ∈ N}. For 0 ≤ α ≤ β ≤ 1 and X > 1, let

πE(α, β,K;X) := # {p ≤ X : α ≤ θE (p) ≤ β, aE(p) ∈ K} .

We average the above quantity over suitable families of elliptic curves. More precisely,

for positive real numbers U, V,A,B,X, let

Sα,β(U, V,A,B;K;X) =
1

AB

∑
U<a≤U+A
V <b≤V+B

πE(α, β,K;X).

13



James and Yu [JY06] proved the following asymptotic for Sα,β(U, V,A,B;K;X).

Theorem 1.20. Let 0 < α < β < 1 be fixed and let U, V be any real numbers. For X

sufficiently large, if A, B > X logX, then we have

Sα,β(U, V,A,B;K;X) ∼ ck(α, β)πk(X),

where

πk(X) =

∫ X

2

t
1
2k
− 1

2

log t
dt

and

ck(α, β) =

(
1

3
+

2

3
δ(k)

)
21/k

k

∫ β

α

| cosπt|
1
k
−1 sin2 πt dt.

Here, δ(k) = 1 if k = 1 and 0 if k > 1.

James and Yu also investigate the order of the error term in the asymptotic described in

Theorem 1. They proved the following Theorem:

Theorem 1.21. Let 0 < α < β < 1 be fixed and let U, V be any real numbers . Suppose

that A,B and X are sufficiently large real numbers and that A, B > (X logX)2. Then, we

have
1

AB

∑
U<a≤U+A
V <b≤V+B

|πE(α, β,K;X)− ck(α, β)πk(X)|2 = o((πk(X))2).

One of the key innovations in [JY06] was the use of the circle method in the proof of the

above Theorems. The aim of this project is to understand the proof of the above theorems

by James-Yu. An even stronger question is to investigate if one can find a function F (X)

such that
1

AB

∑
U<a≤U+A
V<b≤V+B

|πE(α,K;X)− ck(α)πk(X)|2 ∼ (πk(X))2

F (X)
.

In this thesis we introduce a methodology that can be used to derive a smooth analogue of

Theorem 1.20. Although a complete answer to the question of a smooth analogue is still

work in progress, we indicate the key arguments in our efforts to do so. We also make a

conjecture and describe the current technical difficulties in proving it.
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Another problem that will be discussed in this thesis is : what is the distribution of ãE(p2)

as we vary over the primes? Specifically, if we average over a suitable family of elliptic curves

,say GA,B, how does the following quantity behave, as X →∞

1

π̃(X)

1

|GA,B|
∑

E∈GA,B

∑
X
2
<p≤X

(ãE (p2))m, m ≥ 1?

For this problem we will be using the methodology described in [BP19] to obtain a precise

closed-form formula for the distribution function.

15
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Chapter 2

Problem of Representation

The goal of this chapter is to briefly review the use of circle method towards an additive

problem that plays a key role in the proof of Theorem 1.20. In Section 2.1, we mention

fundamental theorems in number theory which are needed for the application of the circle

method to various additive problems. In the remaining sections, we review the proof of

Theorem 1.20 by applying these techniques to the additive problem of our interest.

2.1 Additive number theory techniques

The primary reference for this section is [Nat13].

Theorem 2.1. Abel’s Partial Summation

Let N and C denote the set of natural numbers and the set of complex numbers respectively.

Let u : N −→ C and let f be a continuous function which has a continuous derivative in the

interval [1, x]. Also, let

U(t) :=
∑

1≤n≤x

u(n).

Then, ∑
1≤n≤x

u(n)f(n) = U(x)f(x)−
∫ x

1

U(t)f ′(t)dt (2.1)

Another important Theorem that will be central to our discussion is the Siegel-Walfisz

17



theorem on the distribution of primes in arithmetic progressions.

Theorem 2.2. [Siegel-Walfisz Theorem]

Let q and a be integers such that q ≥ 1 and (q, a) = 1. For any C > 0,

v(x; q, a) :=
∑
p≤x

p≡a(mod q)

log p =
x

ϕ(q)
+ O

(
x

(log(x))C

)
(2.2)

where ϕ(q) denotes the Euler’s-phi function.

The following theorem of Vinogradov is useful to study exponential sums of the form∑
p≤N

log p e(pα).

Theorem 2.3. [Vinogradov’s Inequality] Suppose α is an irrational number satisfying∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

for some rational a/q where 1 ≤ q ≤ N and (a, q) = 1. Then,

∑
p≤N

(log p) e (pα)�
(
N
√
q

+N4/5 +N1/2q1/2

)
(logN)4.

The following theorem is vital to investigate exponential sums of the form
∑

n≤N e(n
2α).

Theorem 2.4. [Weyl’s Inequality]

Suppose α is an irrational number satisfying∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

for some rational a/q where 1 ≤ q ≤ N and (a, q) = 1. Let f(x) = αxk + . . . be a polynomial

18



of degree k ≥ 2. Let K = 2k−1 and ε > 0. Then∣∣∣∣∣
N∑
n=1

e(f(n))

∣∣∣∣∣� N1+ε

(
1

N
+

1

q
+

q

Nk

) 1
K

.

2.2 Problem of Representation

The goal of this section is to study the application of the circle method to the following

problem: Let n ≡ 0, 1(mod 4), n < 0. Estimate

R(n) =
∑
p≤X

r≤(2α
√
p)

1
k

r2k−4p=n

log p.

This estimation plays a vital role in proving Theorem 1.20. We closely follow Section 2

of [JY06]. We divide the study of R(n) in two cases.

Case 1. −n ≤ X

(logX)2k+2

Note that r2k = n+ 4p. Thus, 4p+ n ≥ 0 and p ≥ −n
4
. Therefore,

r ≤ (2α
√
p)

1
k � (−n)

1
k .

Now, observe that for a fixed n, once r is chosen, p is automatically determined. Thus,

R(n)� (logX)#{(r, p) : r2k − 4p = n}
� (logX)#{r � (−n)

1
2k }

� (logX)(−n)
1
2k

Since we have assumed −n ≤ X

(logX)2k+2 , we have

R(n)� (logX)

(
X

(logX)2k+2

) 1
2k

� X
1
2k

(logX)
2k+2

2k

logX

19



� X
1
2k

logX

(logX)4
(since

2k+1

k
≥ 4 for k > 1)

� X
1
2k (logX)−3

This completes Case 1.

Case 2. X

(logX)2k+2 < −n ≤ 4X

With this assumption we have the following range for p.

X

(4 logX)2k+2 < p ≤ X.

We partition the range of p into smaller intervals as follows:

We consider
L⋃
l=0

(
X

gl+1
,
X

gl

]
,

where g = A logX and L = 2k+2 − 1 with A being a constant such that X
gL+1 = X

(4 logX)2k+2 .

We write

R(n) =
L∑
l=0

Rl(n),

where

Rl(n) =
∑

X

gl+1<p≤
X

gL

r≤(2α
√
p)

1
k

r2k−4p=n

log p.

Let us denote

R∗l (n) =
∑

X

gl+1<p≤
X

gL

r≤
(

2α
√

X

gl

) 1
k

r2k−4p=n

log p.
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We note that

0 ≤ R∗l (n)−Rl(n) =
∑

X

gl+1<p≤
X

gl

(2α
√
p)

1
k<r≤

(
2α
√

X

gl

) 1
k

r2k−4p=n

log p.

Thus, we have

R∗l (n)−Rl(n)� logX#


(

2α

√
X

gl+1

) 1
k

≤ r ≤

(
2α

√
X

gl

) 1
k

�
(
X

gl

) 1
2k

logX.

Thus,

R(n) =
L∑
l=0

Rl(n)

=
L∑
l=0

(R∗l (n) +Rl(n)−R∗l (n))

=
L∑
l=0

R∗l (n) +
L∑
l=0

(Rl(n)−R∗l (n))

=
L∑
l=0

R∗l (n) + O

(
L∑
l=0

(
X

gl

) 1
2k

logX

)

=
L∑
l=0

R∗l (n) + O
(
LX

1
2k logX

)
=

L∑
l=0

R∗l (n) + Ok

(
X

1
2k logX

)
(since L = 2k+2 − 1)

The advantage of R∗l (n) over Rl(n) is that the range of r does not depend on p. We now

convert R∗l (n) into an integral over a suitable exponential sum. For β ∈ R, we define the

sums

sl(β) =
∑

X

gl+1<p≤
X

gl

e(pβ) log p
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and

tl(β) =
∑

r≤
(

2α
√

X

gl

) 1
k

e(r2kβ).

We observe that

R∗l (n) =

∫ 1

0

tl(β)sl(−4β)e(−nβ)dβ. (2.3)

2.2.1 Major and minor arcs

We will apply the Ramanujan-Hardy-Littlewood circle method to evaluate the above integral.

To invoke the circle method we first define the major and minor arcs. We choose P =

(logX)22k+3
.

Define for 1 ≤ q ≤ P and 0 ≤ a ≤ q with (a, q) = 1

M(q, a) := {β ∈ [0, 1] :| β − a

q
|≤ P

X
}.

Then the major arc is defined as

M :=
⋃

1≤q≤P

q⋃
a=0

(a,q)=1

M(q, a)

and the minor arc is defined as

m := [0, 1]−M.

Observe that M(a, q)’s are disjoint for sufficiently large values of X. Also note that the

length of the intervals M(0, 0) and M(1, 1) are half of the other intervals.

Now,

R∗l (n) =

∫ 1

0

tl(β)sl(−4β)e(−nβ)dβ

=

∫
M

tl(β)sl(−4β)e(−nβ)dβ +

∫
m

tl(β)sl(−4β)e(−nβ)dβ. (2.4)

We denote
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El(n) =

∫
m

tl(β)sl(−4β)e(−nβ)dβ.

Using some of the classical estimates of Vinogradov and Weyl for sl(β) and tl(β) respec-

tively, namely Theorems 2.3 and 2.4, one can derive the bound

∑
−n≤4X

|El(n)|2 � X1+ 1
k

(logX)33
(2.5)

2.2.2 Integral over Major Arcs

To evaluate the integral over major arcs∫
M

tl(β)sl(−4β)e(−nβ)dβ,

we first take β = a
q

and observe that

sl

(
−4a

q

)
=

q∑
r=1

∑
X

gl+1<p≤
X

gl

p≡r(mod q)

log p e

(
−4ar

q

)

=
∑

1≤r≤q
(r, q)=1

e

(
−4ar

q

) ∑
X

gl+1<p≤
X

gl

p≡r(mod q)

log p+ O(log q)

(2.6)

By Theorem 2.2, we have, for any C > 0,

∑
X

gl+1<p≤
X

gl

p≡r(mod q)

log p =
1

φ(q)

(
X

gl+1
− X

gl

)
+ OC

(
X

(logX)C

)
.

We also recall the Ramanujan sum

q∑
r=1

e

(
−4ra

q

)
= φ(q)

µ
(

q
(q, 4a)

)
φ
(

q
(q, 4a)

) .
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Since (a, q) = 1, the above expression equals

φ(q)
µ
(

q
(q, 4)

)
φ
(

q
(q, 4)

) .
Thus,

sl

(
−4a

q

)
= φ(q)

µ
(

q
(q, 4)

)
φ
(

q
(q, 4)

) 1

φ(q)

(
X

gl+1
− X

gl

)
+ OC

(
qX

(logX)C

)
. (2.7)

For β ∈M(q, a) we denote γ = β− a
q
. By an application of partial summation and using

equation (2.7), for all β ∈M(q, a) we obtain

sl(−4β) =
µ
(

q
(q, 4)

)
φ
(

q
(q, 4)

)ul (−4γ) + O

(
P 2X

(logX)C

)
(for any C > 0), (2.8)

where ul(γ) =
∑

X

gl+1<m≤
X

gl
e(mγ). Similarly, the major arc calculations for tl(β) show that

tl(β) =
S2k(q, a)

q
vl

(
β − a

q

)
+ O(P

2
3 ), (2.9)

where

vl(γ) =
∑

s≤4α2 X

gl

1

2k
s

1
2k
−1e(sγ),

and

S2k(q, a) =

q∑
m=1

e

(
m2k a

q

)
.

Combining equations (2.8) and (2.9) into the integral for R∗l (n) over the major arcs, we get

∫
M

tl(β)sl(−4β)e(−nβ)dβ

=
∑
q≤P

µ
(

q
(q, 4)

)
qφ
(

q
(q, 4)

) q∑
a=1

(a, q)=1

S2k(q, a)e

(
−an
q

)

+

∫ 1
2

− 1
2

ul(−4γ)vl(γ)e(−nγ)dγ + O

(
X

1
2k

(logX)D0

)
(2.10)
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for any D0 > 0. We denote

G(n, P ) =
∑
q≤P

F (q, n),

where

F (q, n) =
µ
(

q
(q, 4)

)
qφ
(

q
(q, 4)

) q∑
a=1

(a, q)=1

S2k(q, a)e

(
−an
q

)
.

This is known as the singular series. The singular integral is

Jl(n) =

∫ 1
2

− 1
2

ul(−4γ)vl(γ)e(−nγ)dγ.

The evaluation of the sum G(n, p) and the integral Jl(n) is a delicate calculation. Eval-

uating Jl(n) for each 0 ≤ l ≤ L, recalling equation (2.5) and combining Cases 1 and 2, we

get

Theorem 2.5.

R(n) =
L∑
l=0

∫ 1

0

sl(−4β)tl(β)e(−nβ)dβ = G(n, p)J(n) + O

(
X

1
2k

(logX)3

)
+ E(n),

where

J(n) =
∑
m≤X
s≤4α2m
s−4m=n

1

2k
s

1
2k
−1

and

E(n) =
L∑
l=0

El(n),
∑
−n≤4X

|El(n)|2 � X1+ 1
k

(logX)33
.

2.3 Remarks

In this section we will briefly discuss about the application of the estimate obtained in the

previous section in the proof of Theorem 1.20.
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Let χd denote the Dirichlet character. Define

L0(d) =
∑
n≤X

2
3

χd(n)

n

and

K0(X) =
1

2π

∑
p≤X

∑
r≤(2α

√
p)

1
k

∑
r2k−4p=df2

f≤(logX)2

d≡0, 1(mod 4)

√
| d |L0(d).

The proof of Theorem 1.20 proceeds through following steps.

Theorem 2.6. We have

K0(X) =

(
2k

3k + 1
ck(α) + O(logX)−2)

)
X

3
2

+ 1
2k .

Proof. Using Theorem 2.5, we write

K0(X) =
1

2π

∑
f≤(logX)2

0<−df2≤4X
d≡0, 1(mod 4)

√
| d |L0(d)(G(df 2, P )J(df 2) + E(df 2) + O

(
X

1
2k

(logX)3

)

One can prove that ∑
f, d

√
| d | | L0(d)E(df 2) |� X

3
2

+ 1
2k

(logX)7
.

Therefore, we have

K0(X) =
1

2π

∑
f≤(logX)2

0<−df2≤4X
d≡0, 1(mod 4)

√
| d |L0(d)G(df 2, P )J(df 2) + O(X

3
2

+ 1
2k (logX)−2).

Properly estimating the above sum completes the proof of the theorem. �

Using Deuring’s theorem ([Bir68]) one can prove the following: For a fixed prime p and

r ∈ Z∩ (−2
√
p, 2
√
p), the number of elliptic curves E(a, b) : y2 = x3 + ax+ b with a, b ∈ Fp
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and aE (p) = r (denoted by N(p, r)), is given by

N(p, r) =
pH(r2 − 4p)

2
+ O(p),

where H(r2 − 4p) is the Kronecker class number defined as

H(r2 − 4p) = 2
∑

r2−4p=df2

d≡o, 1(mod 4)

h(d)

w(d)
.

Here w(d) and h(d) denote the number of units and the class number of the order of dis-

criminant d respectively.

Therefore, we obtain

Sα(U, V, A, B, K; X) =
1

AB

∑
p≤X

∑
0<r≤2α

√
p

r∈K

(
A

p
+ O(1)

)(
B

p
+ O(1)

)
N(p, r)

= (1 + O(logX)−1))M(X) + (O(X
1
2k )), (2.11)

where M(X) = 1
2

∑
p≤X

0<r≤2α
√
p

r∈K

H(r2−4p)
p

. The following theorem is the final piece in the proof

of 1.20. We will sketch the outline of the proof.

Theorem 2.7. For fixed 0 < α < 1, and sufficiently large X we have

M(X) ∼ ck(α)πk(X).

Here,

πk(X) =

∫ X

2

t
1
2k
− 1

2

log t
dt

and

ck(α) =

(
1

3
+

2

3
δ(k)

)
21/k

k

∫ α

0

| cosπt|
1
k
−1 sin2 πt dt.

Proof.

M(X) =
∑
p≤X

1

p

∑
0<r≤(2α

√
p)

1
k

∑
r2k−4p=df2

d≡0, 1(mod 4)

h(d)

w(d)
(2.12)
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One can prove that for f > (logX)2 this sum contributes

∑
p≤X

1

p

∑
0<r≤(2α

√
p)

1
k

∑
r2k−4p=df2

f>(logX)2

d≡0, 1(mod 4)

h(d)

w(d)
� X

1
2

+ 1
2k

(logX)3

Therefore, we obtain

M(X) =
∑
p≤X

1

p

∑
0<r≤(2α

√
p)

1
k

∑
r2k−4p=df2

f≤(logX)2

d≡0, 1(mod 4)

h(d)

w(d)
+ O

(
X

1
2

+ 1
2k

(logX)3

)
.

Using Polya-Vinogradov theorem one can prove that

M(X) = M0(X) + O

(
X

1
2

+ 1
2k

(logX)3

)
,

where

M0(X) =
1

2π

∑
p≤X

1

p

∑
0<r≤(2α

√
p)

1
k

∑
r2k−4p=df2

f≤(logX)2

d≡0, 1(mod 4)

√
| d |L0(d).

Using Theorem 2.6 and partial summation, we have

M0(X) = ck(α)πk(X) + O

(
X

1
2

+ 1
2k

(logX)3

)
.

This completes the proof. �
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Chapter 3

Smooth Analogue

In this chapter we will consider a smooth periodic test function φ. Instead of studying the

sum
∑

p≤X χI which contains the discrete characteristic function, we will study the sum∑
p≤X φ(θE (p)). The smooth function φ is constructed in a way that the Fourier series is

finite. We aimed at obtaining an analogue of Theorem 1.20 using a general template from

Fourier analysis that was developed in [BPS20]. In the end we will make a comment about

how far we reached and further developments that can be made in this process.

First we will recall the following lemma (Lemma 2.1 [BPS20])

Lemma 3.1.

2 cos (2πn θE (p)) =
aE(p2n)

pn
− aE(p2n−2)

pn−1
(3.1)

Let us make the following definition.

Definition 3.2. For any set A of real numbers, we define the characteristic function χA :

R −→ {0, 1} as follows:

χA(x) = 0 (if x /∈ A)

= 1 (if x ∈ A)

Let us briefly review Fourier transform and its properties which are important for our

purpose.
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Definition 3.3. For a function f : R −→ C of Schwartz class, we define the Fourier

transform of f (denoted by f̂) as follows

f̂(ε) =

∫ +∞

−∞
f(x)e(−xε)dx,

where e(t) := e2πit.

It is interesting to ask how Fourier transform of a function behaves under scaling or

shifting of the variable.

• Shifting property If h(x) = f(x− x0) then ĥ(ε) = e(−x0ε)f̂(ε).

• Scaling property If h(x) = f
(
x
L

)
then ĥ(ε) = 1

|L| f̂
(
ε
L

)
.

• Poisson Summation formula If f : R −→ C is a function of the Schwartz class such

that the series ∑
n∈Z

f(n+ x)

converges absolutely and uniformly in R and such that
∑

n∈Z f̂(n) converges absolutely,

then
∑

n∈Z f(n) =
∑

m∈Z f̂(m).

We have

Sα(U, V, A, B, K; X) =
1

AB

∑
U<a≤U+A
V <b≤V+B

πE (α; K, X)

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K
aE (p)

2
√
p
∈[0,α]

1

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

χ[0,α]

(
aE (p)

2
√
p

)

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

χ[0,α](cos π θE (p))
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=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

χ[ θ
π
, 1
2

](θE (p)) (where arccosα = θ)

(3.2)

In general we will consider the function χ[− 1
L
, 1
L

].

3.1 Smooth Variation

For a function f : R −→ R, we denote f̂ to be the Fourier transform of f. Let Φ ∈ C∞(R) is

an even function of Schwartz’s class such that Φ̂ is compactly supported, i.e, Φ̂(R) ∈ [−1, 1].

Then define

φL(θ) :=
∑
n∈Z

Φ(L(θ + n))

Let us define

ψ(t) := Φ(L(θ + t)).

Then by the scaling and shfiting properties of Fourier transform we have

ψ̂(t) =
1

L
e(θt)Φ̂

(
t

L

)
Therefore,

φL(θ) =
∑
n∈Z

Φ(L(θ + n))

=
∑
n∈Z

ψ(n)

=
∑
n∈Z

ψ̂(n) (By Poisson summation formula)

=
1

L

∑
n∈Z

Φ̂
(n
L

)
e(θn) (3.3)

Here we have used the fact that there exists a φ with above mentioned properties such

that χ[− 1
L
, 1
L

] is approximated by φL. We call φL as the smooth version of χ[− 1
L
, 1
L

]. Let us
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evaluate

1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

φL(θE (p))

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

∑
n∈Z

1

L
Φ̂
(n
L

)
e(n θE(p)) (by (3.3))

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

∑
|n|≤L

1

L
Φ̂
(n
L

)
e(n θE(p))

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

∑
|n|≤L

1

L
Φ̂
(n
L

)
e(n θE(p))

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

∑
1≤n≤L

1

L
Φ̂
(n
L

)
{e(n θE(p)) + e(−n θE(p))}

+
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

1

L
Φ̂(0) (since φ is even function, so is its Fourier transform)

=
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

1

L
Φ̂(0)

+
1

L

L∑
n=1

Φ̂
(n
L

) 1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

2 cos 2πn θE(p)


=

1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

1

L
Φ̂(0)

+
1

L

L∑
n=1

Φ̂
(n
L

) 1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

(
aE(p2n)

pn
− aE(p2n−2)

pn−1

) (By Lemma 3.1)

=
1

L

L∑
n=0

[
Φ̂
(n
L

)
− Φ̂

(
n+ 1

L

)]
1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

aE(p2n)

pn
(3.4)
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Denote

U(n) := Φ̂
(n
L

)
− Φ̂

(
n+ 1

L

)
.

From (3.4), we have

1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

φL(θE (p)) =
L∑
n=0

U(n)

 1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

aE (p)∈K

aE(p2n)

pn

 .
Henceforth, let us denote, for any function H(a, b),

〈H(a, b)〉 :=
1

AB

∑
U<a≤U+A
V <b≤V+B

H(a, b).

By (3.4), we have

∑
p≤X

aE (p)∈K

φL(θE (p))− U(0)
∑
p≤X

aE (p)∈K

1 =
L∑
n=1

U(n)
∑
p≤X

aE (p)∈K

aE(p2n)

pn
. (3.5)

3.2 Remark

In this direction one needs to determine the the connection between the properties of the

Fourier coefficients of φ(t) in our chosen test function and the growth requirements for A

and B in order to derive asymptotics of the form

1

AB

∑
U<a≤U+A
V <b≤V+B

∑
p≤X

φ(θE (p)) ∼ πk(X)

(
1

3
+

2

3
δ(k)

)
21/k

k

∫ 1

0

g(t)| cos πt|
1
k
−1 sin2 πt dt.

In this way one would like to prove an analogous result of 1.20 with χ[0,α] replaced by

φL, L = 1
α

.

We saw at the end of the previous chapter that one of the key steps in proving Theorem
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1.20 is to show that, as X →∞,

M(X) :=
1

2

∑
p≤X

0<r≤(2α
√
p)1/2k

H(r2k − 4p)

p

∼ πk(X)

(
1

3
+

2

3
δ(k)

)
21/k

k

∫ α

0

| cosπt|
1
k
−1 sin2 πt dt.

(3.6)

In order to obtain a smooth analogue of Theorem 1.20, therefore, we have to obtain

a smooth analogue of equation (3.6). In this direction, we make the following conjecture,

which we hope to prove in future work.

Conjecture 3.4.

1

2

∑
p≤X

0<r<(2
√
p)1/2k

H(r2k − 4p)

p

L∑
n=0

U(n)X2n

(
rk
√
p

)

∼ πk(X)

(
1

3
+

2

3
δ(k)

)
21/k

k

∫ 1

0

φL(t)| cosπt|
1
k
−1 sin2 πt dt.

Here, X2n(t) denotes the Chebychev polynomial

X2n(t) :=
n∑
j=0

(−1)j
(

2n− j
j

)(
rk
√
p

)2n−2j

.

Currently, the problem that we have encountered in proving this conjecture is that in the

proof of equation (3.6), the estimation of M(X) depends very strongly on the fact that the

inner sum runs over

0 < r ≤ (2α
√
p)1/2k

for some fixed α < 1. The argument of James and Yu to evaluate this sum does not work

for α = 1.

On the other hand, when we attempt to prove the above conjecture, our current difficulty

arises from the fact that the corresponding inner sum now runs over

0 < r < (2
√
p)1/2k

(which is essentially the above sum with α = 1 for which the argument of James and Yu
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does not work).

Here, the dependence on α = 1/L moves to the innermost weighted sum

L∑
n=0

U(n)X2n

(
rk
√
p

)
.

We are currently working to resolve this difficulty.
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Chapter 4

Distribution of ãE (p2)

In 1968, B.J. Birch addressed the following question in his work [Bir68]: Instead of fixing

the curve E and varying the prime p, one can fix p and vary E. There are only finitely many

curves over the field Fp. In his work, he computed the higher moments of aE (p) with respect

to the measure µ(t) := 2
π

sin2 tdt. The following theorem was proved:

Theorem 4.1. mean [(aE (p))2R] ∼ 2R!
R!(R+1)!

pR as p→∞.

This result inspired us to look into the following question : What is the distribution of

ãE(p2) as we vary over the primes? Specifically, if we average over a suitable family of elliptic

curves , say GA,B, how does the following quantity behave, as X →∞

1

π̃(X)

1

|GA,B|
∑

E∈GA,B

∑
X
2
<p≤X

(ab∆(a, b), p)=1

(ãE (p2))m, m ≥ 1(where∆(a, b) := 4a3 + 27b2)?

(where ∆(a, b) := 4a3 + 27b2) This question was not addressed in the existing literature and

we are able to prove a theorem that precisely predicts the distribution of ãE (p2).

In this context, let us recall an important result([BP19], Lemma 3.2)

Lemma 4.2. Assume that m ∈ N ∪ {0}, and E has a good reduction at p. Define,

fm(x) :=

[m
2

]∑
j=0

(−1)j
(
m− j
j

)
xm−2j.
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Then,

fm(ãE (p)) = ãE (pm).

Using this result we can find coefficients h2j(l) such that

ãE (p)2j =

j∑
l=0

h2j(l) ãE (p2l).

Among these coefficients, h2j(0) will be of our special interest, so let us find an explicit

expression for it.

Lemma 4.3.

h2j(0) =
1

2π

∫ 2

−2

t2j
√

4− t2dt

Proof. The Chebyshev polynomials defined in Lemma 4.2 forms an orthonormal basis with

respect to the Sato-Tate measure. Therefore, we have an linear expression of the form:

t2j =

2j∑
n=0

cnfn(t).

Taking inner product on both side with f0(t), which is just 1, gives us the required result. �

Denote

δ(t) = 1 if n is even

= 0 if n is odd

Let us recall the following results from [BP19].

Theorem 4.4. For all A, B ≥ 1 and n ∈ N∑
|a|≤A,|b|≤B

(ab∆(a, b), n)=1

ãE (n) = 4ABS(n) + O
(
d(n)s(n)2

)
+ O (d(n)s(n)(A+B)) (4.1)
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where s(n) denote the largest squarefree number dividing n and

S(n) :=
1

s(n)2

∑
1≤a≤s(n)
1≤b≤s(n)

(ab∆(a, b), n)=1

ãE (n).

Lemma 4.5. Let c > 0. Let m ∈ N. Then, we have

∑
X
2
<p≤X

S(pm) = Oc

(
mX

1
2

(logX)c

)
. (4.2)

We will now prove a result that will be instrumental for our computation.

Lemma 4.6. Suppose A = A(X) ≥ 1 and B = B(X) ≥ 1 such that logA
logX

, logB
logX

→ ∞ as

X →∞. Let

GA,B := {E(a, b) : 1 ≤ |a| ≤ A, 1 ≤ |b| ≤ B}.

Then,

lim
X→∞

1

π̃(X)

1

|GA,B|
∑

E∈GA,B

∑
X
2
<p≤X

(ab∆(a, b), p)=1

(ãE (p2l)) = 1 (if l = 0)

= 0 (if l ≥ 1)

Proof. The asymptotic for l = 0 is immediate. To prove the result for l ≥ 1 we observe

that by Theorem 4.4

∑
|a|≤A,|b|≤B

(ab(4a3−27b2),p)=1

ãE (p2l) = 4ABS(p2l) + Oε

(
d(p2l)s(p2l)(A+B)

)

Clearly, d(p2l) = 2l + 1 and s(p2l) = p. Therefore, we have∑
|a|≤A,|b|≤B

(ab(4a3−27b2),p)=1

ãE (p2l) = 4ABS(p2l) + Oε (p(2l + 1)(A+B)) (4.3)
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We also note that from Lemma 4.5

∑
X
2
<p≤X

S(p2l) = O

(
lx

1
2

(logX)c

)
,

for c > 0. Thus,

1

π̃(X)

1

|GA,B|
∑

E∈GA,B

∑
X
2
<p≤X

(ab∆(a, b))=1

(ãE (p2l))

=
1

π̃(X)

1

4AB
4AB

∑
X
2
<p≤X

1

p2

∑
1≤a≤p−1
1≤b≤p−1

(ab∆(a, b))=1

ãE (p2l) + Oc

 1

π̃(X)

(
1

A
+

1

B

) ∑
X
2
<p≤X

p
1
2

+εl



� 1

π̃(X)

X
1
2

(logX)c
+X

1
2

+ε

(
1

A
+

1

B

)
(4.4)

As X → ∞, X
1
2

(π̃(X) logX)c
→ 0, and as logA

logX
, logB

logX
→ ∞ we have X

1
2+ε

A
, X

1
2+ε

B
→ 0. Thus, we

have proved the lemma for l ≥ 1. �

This result will allow us to calculate the distribution of ãE (p2) in the following manner:

〈
1

π̃(X)

∑
X
2
<p≤X

(ab∆(a, b), p)=1

ãE (p2)m

〉
=

〈
1

π̃(X)

∑
X
2
<p≤X

(ab∆(a, b), p)=1

(ãE (p)2 − 1)m

〉

=

〈
1

π̃(X)

∑
X
2
<p≤X

(ab∆(a, b), p)=1

m∑
j=0

(−1)m−j
(
m

j

)
ãE (p)2j

〉

=

〈
1

π̃(X)

∑
X
2
<p≤X

(ab∆(a, b), p)=1

m∑
j=0

(−1)m−j
(
m

j

) j∑
l=0

h2j(l) ãE (p2l)

〉
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As X →∞, (using Lemma 4.6) we have

lim
X→∞

〈
1

π̃(X)

∑
X
2
<p≤X

(ab∆(a, b), p)=1

ãE (p2)m

〉
=

m∑
j=0

(−1)m−j
(
m

j

)
h2j(0) (4.5)

Now, combining the result of Lemma 4.6 and (4.5) we obtain

lim
X→∞

〈
1

π̃(X)

∑
X
2
<p≤X

(ab∆(a, b), p)=1

ãE (p2)m

〉
=

m∑
j=0

(−1)m−j
(
m

j

)
1

2π

∫ 2

−2

t2j
√

4− t2dt

=

∫ 2

−2

(
m∑
j=0

(
m

j

)
(−1)m−jt2j

) √
4− t2
2π

dt

=

∫ 2

−2

(t2 − 1)m
(√

4− t2
2π

)
dt

=

∫ 3

−1

ym
√

3− y
y + 1

dy (By changing the variable)

(4.6)

Let us denote this new measure by

−→µ (y) :=

√
3− y
y + 1

.

4.1 Remarks

In this direction one can further study the distribution of the error term, precisely for any

subinterval I ⊆ [−1, 3] construct a function G(X) and determine the bounds on A and B

such that ∣∣∣∣∣∣∣∣∣
1

π̃(X)

〈 ∑
X
2
<p≤X

(ab∆(a, b), p)=1

χI(ãE (p2)

〉
−
∫
I

−→µ (y)dy

∣∣∣∣∣∣∣∣∣ ≤ G(X).

This is also a question of interest to us for our future work.
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l’IHÉS, 108:1–181, 2008.

[Has36a] Helmut Hasse. On the theory of abstract elliptical function fields i. The structure
of the group of divisor classes of finite order. 1936.

[Has36b] Helmut Hasse. On the theory of abstract elliptical function fields ii. Automor-
phisms and meromorphisms. The addition theorem. 1936.

[Has36c] Helmut Hasse. On the theory of abstract elliptical function fields iii. The structure
of the meromorphism ring. The Riemann hypothesis. 1936.

[HSBT10] Michael Harris, Nick Shepherd-Barron, and Richard Taylor. A family of Calabi-
Yau varieties and potential automorphy. Annals of Mathematics, pages 779–813,
2010.

[JT94] Joseph H. Silverman John Tate. Rational Points on Elliptic Curves. Springer-
Verlag, 1994.

[JY06] Kevin James and Gang Yu. Average Frobenius distribution of elliptic curves.
Acta Arithmatica, 124(1):79, 2006.

[Nat13] Melvyn B Nathanson. Additive Number Theory The Classical Bases, volume 164.
Springer Science & Business Media, 2013.

43



[Tat65] John Tate. Algebraic cycles and poles of zeta functions. Arithmetical Algebraic
Geometry, ed. O.F.G. Schilling(New York), pages 93–110, 1965.

[Tay08] Richard Taylor. Automorphy for some l-adic lifts of automorphic mod l galois
representations. ii. Publications mathématiques, 108(1):183–239, 2008.
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